WitrynaEmpirically, on a variety of public datasets, we illustrate significant performance improvement using our SSA-enhanced BERT model. One of the most popular … WitrynaY. Chen et al.: Improving BERT With Self-Supervised Attention FIGURE 1. The multi-head attention scores of each word on the last layer, obtained by BERT on SST …
Improving BERT With Self-Supervised Attention – DOAJ
WitrynaImproving BERT with Self-Supervised Attention Xiaoyu Kou1,,y, Yaming Yang 2,, Yujing Wang1,2,, Ce Zhang3,y Yiren Chen1,y, Yunhai Tong 1, Yan Zhang , Jing Bai2 1Key Laboratory of Machine Perception (MOE) Department of Machine Intelligence, Peking University 2Microsoft Research Asia 3ETH Zurich¨ fkouxiaoyu, yrchen92, … Witrynawith disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the disentangled attention mechanism, where ... contextual word representations using a self-supervision objective, known as Masked Language Model (MLM) (Devlin et al., 2024). Specifically, given a sequence X tx citimortgage corporate headquarters
Improving BERT With Self-Supervised Attention - ResearchGate
WitrynaBidirectional Encoder Representations from Transformers (BERT) is a family of masked-language models introduced in 2024 by researchers at Google. A 2024 literature survey concluded that "in a little over a year, BERT has become a ubiquitous baseline in Natural Language Processing (NLP) experiments counting over 150 research publications … Witryna8 kwi 2024 · Title: Improving BERT with Self-Supervised Attention. Authors: Xiaoyu Kou, Yaming Yang, Yujing Wang, Ce Zhang, Yiren Chen, Yunhai Tong, Yan Zhang, Jing Bai. Download PDF Abstract: One of the most popular paradigms of applying large, pre-trained NLP models such as BERT is to fine-tune it on a smaller dataset. However, … WitrynaUnsupervised pre-training Unsupervised pre-training is a special case of semi-supervised learning where the goal is to find a good initialization point instead of modifying the supervised learning objective. Early works explored the use of the technique in image classification [20, 49, 63] and regression tasks [3]. diastolic murmur right sternal border